Ataxia telangiectasia mutated and p21CIP1 modulate cell survival of drug-induced senescent tumor cells: implications for chemotherapy.
نویسندگان
چکیده
PURPOSE Premature or stress-induced senescence is a major cellular response to chemotherapy in solid tumors and contributes to successful treatment. However, senescent tumor cells are resistant to apoptosis and may also reenter the cell cycle. We set out to find a means to specifically induce senescent tumor cells to undergo cell death and not to reenter the cell cycle that may have general application in cancer therapy. EXPERIMENTAL DESIGN We investigated the mechanisms regulating cell survival in drug-induced senescent tumor cells. Using immunofluorescence and flow cytometry-based techniques, we established the status of the ataxia telangiectasia mutated (ATM) signaling pathway in these cells. We assayed the requirement of ATM signaling and p21(CIP1) expression for survival in premature senescent tumor cells using pharmacologic inhibitors and antisense oligonucleotides. RESULTS The ATM/ATR (ATM- and Rad3-related) signaling pathway was found to be constitutively active in drug-induced senescent tumor cells. We found that blocking ATM/ATR signaling with pharmacologic inhibitors, including the novel ATM inhibitors KU55933 and CGK733, induced senescent breast, lung, and colon carcinoma cells to undergo cell death. We show that the mechanism of action of this effect is directly via p21(CIP1), which acts downstream of ATM. This is in contrast to the effects of ATM inhibitors on normal, untransformed senescent cells. CONCLUSIONS Blocking ATM and/or p21(CIP1) following initial treatment with a low dose of senescence-inducing chemotherapy is a potentially less toxic and highly specific treatment for carcinomas.
منابع مشابه
Ataxia Telangiectasia Mutated and p21Modulate Cell Survival of Drug-Induced Senescent Tumor Cells: Implications for Chemotherapy
Purpose: Premature or stress-induced senescence is a major cellular response to chemotherapy in solid tumors and contributes to successful treatment. However, senescent tumor cells are resistant to apoptosis andmay also reenter the cell cycle.We set out to find ameans to specifically induce senescent tumor cells to undergo cell death andnot to reenter the cell cycle that may have general applic...
متن کاملp21 maintains senescent cell viability under persistent DNA damage response by restraining JNK and caspase signaling
Cellular senescence is a permanent state of cell cycle arrest that protects the organism from tumorigenesis and regulates tissue integrity upon damage and during tissue remodeling. However, accumulation of senescent cells in tissues during aging contributes to age-related pathologies. A deeper understanding of the mechanisms regulating the viability of senescent cells is therefore required. Her...
متن کاملThe ATM and ATR inhibitors CGK733 and caffeine suppress cyclin D1 levels and inhibit cell proliferation
The ataxia telangiectasia mutated (ATM) and the ATM- related (ATR) kinases play a central role in facilitating the resistance of cancer cells to genotoxic treatment regimens. The components of the ATM and ATR regulated signaling pathways thus provide attractive pharmacological targets, since their inhibition enhances cellular sensitivity to chemo- and radiotherapy. Caffeine as well as more spec...
متن کاملHeme oxygenase-1 and carbon monoxide modulate DNA repair through ataxia-telangiectasia mutated (ATM) protein.
Stability and repair of DNA is of principal importance in cell survival. Heme oxygenase-1 (HO-1; Hmox1) is critical in maintaining cellular homeostasis, in large part through its ability to generate CO, but neither molecule has been studied in the setting of DNA damage. Naïve Hmox1(-/-) mice exhibit excessive tissue levels of γ-histone H2A, whereas administration of genotoxic stressors or irrad...
متن کاملLamin B1 loss is a senescence-associated biomarker
Cellular senescence is a potent tumor-suppressive mechanism that arrests cell proliferation and has been linked to aging. However, studies of senescence have been impeded by the lack of simple, exclusive biomarkers of the senescent state. Senescent cells develop characteristic morphological changes, which include enlarged and often irregular nuclei and chromatin reorganization. Because alterati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Clinical cancer research : an official journal of the American Association for Cancer Research
دوره 14 6 شماره
صفحات -
تاریخ انتشار 2008